543 research outputs found

    The Structure of Close Binaries in Two Dimensions

    Get PDF
    The structure and evolution of close binary stars has been studied using the two-dimensional (2D) stellar structure algorithm developed by Deupree (1995). We have calculated a series of solar composition stellar evolution sequences of binary models, where the mass of the 2D model is 8Msun with a point-mass 5Msun companion. We have also studied the structure of the companion in 2D, by considering the zero-age main-sequence (ZAMS) structure of a 5Msun model with an 8Msun point-mass companion. In all cases the binary orbit was assumed to be circular and co-rotating with the rotation rate of the stars. We considered binary models with three different initial separations, a = 10, 14 and 20Rsun. These models were evolved through central hydrogen burning or until the more massive star expanded to fill its critical potential surface or Roche lobe. The calculations show that evolution of the deep interior quantities is only slightly modified from those of single star evolution. Describing the model surface as a Roche equipotential is also satisfactory until very close to the time of Roche lobe overflow, when the self gravity of the model about to lose mass develops a noticeable aspherical component and the surface time scale becomes sufficiently short that it is conceivable that the actual surface is not an equipotential.Comment: 22 pages, 10 figures, accepted by Ap

    Radiatively-Driven Outflows and Avoidance of Common-Envelope Evolution in Close Binaries

    Full text link
    Recent work on Cygnus X-2 suggests that neutron-star or black-hole binaries survive highly super-Eddington mass transfer rates without undergoing common-envelope evolution. We suggest here that the accretion flows in such cases are radiation pressure-dominated versions of the "ADIOS" picture proposed by Blandford and Begelman (1999), in which almost all the mass is expelled from large radii in the accretion disk. We estimate the maximum radius from which mass loss is likely to occur, and show that common-envelope evolution is probably avoided in any binary in which a main-sequence donor transfers mass on a thermal timescale to a neutron star or black hole, even though the mass transfer rate may reach values of 0.001 solar masses per year. This conclusion probably applies also to donors expanding across the Hertzsprung gap, provided that their envelopes are radiative. SS433 may be an example of a system in this state.Comment: 4 pages, submitted to Astrophysical Journal Letters, 26 March 199

    Cygnus X-2: the Descendant of an Intermediate-Mass X-Ray Binary

    Full text link
    The X-ray binary Cygnus X-2 (Cyg X-2) has recently been shown to contain a secondary that is much more luminous and hotter than is appropriate for a low-mass subgiant. We present detailed binary-evolution calculations which demonstrate that the present evolutionary state of Cyg X-2 can be understood if the secondary had an initial mass of around 3.5 M_sun and started to transfer mass near the end of its main-sequence phase (or, somewhat less likely, just after leaving the main sequence). Most of the mass of the secondary must have been ejected from the system during an earlier rapid mass-transfer phase. In the present phase, the secondary has a mass of around 0.5 M_sun with a non-degenerate helium core. It is burning hydrogen in a shell, and mass transfer is driven by the advancement of the burning shell. Cyg X-2 therefore is related to a previously little studied class of intermediate-mass X-ray binaries (IMXBs). We suggest that perhaps a significant fraction of X-ray binaries presently classified as low-mass X-ray binaries may be descendants of IMXBs and discuss some of the implications

    Observing Lense-Thirring Precession in Tidal Disruption Flares

    Full text link
    When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letters. Minor changes made to match proof

    A New Evolutionary Path to Type Ia Supernovae: Helium-Rich Super-Soft X-Ray Source Channel

    Get PDF
    We have found a new evolutionary path to Type Ia supernovae (SNe Ia) which has been overlooked in previous work. In this scenario, a carbon-oxygen white dwarf (C+O WD) is originated, not from an asymptotic giant branch star with a C+O core, but from a red-giant star with a helium core of 0.82.0M\sim 0.8-2.0 M_\odot. The helium star, which is formed after the first common envelope evolution, evolves to form a C+O WD of 0.81.1M\sim 0.8-1.1 M_\odot with transferring a part of the helium envelope onto the secondary main-sequence star. This new evolutionary path, together with the optically thick wind from mass-accreting white dwarf, provides a much wider channel to SNe Ia than previous scenarios. A part of the progenitor systems are identified as the luminous supersoft X-ray sources or the recurrent novae like U Sco, which are characterized by the accretion of helium-rich matter. The white dwarf accretes hydrogen-rich, helium-enhanced matter from a lobe-filling, slightly evolved companion at a critical rate and blows excess matter in the wind. The white dwarf grows in mass to the Chandrasekhar mass limit and explodes as an SN Ia. A theoretical estimate indicates that this channel contributes a considerable part of the inferred rate of SNe Ia in our Galaxy, i.e., the rate is about ten times larger than the previous theoretical estimates for white dwarfs with slightly evolved companions.Comment: 19 pages including 12 figures, to be published in ApJ, 519, No.

    Inelastic Dark Matter As An Efficient Fuel For Compact Stars

    Full text link
    Dark matter in the form of weakly interacting massive particles is predicted to become gravitationally captured and accumulate in stars. While the subsequent annihilations of such particles lead to the injection of energy into stellar cores, elastically scattering dark matter particles do not generally yield enough energy to observably impact stellar phenomenology. Dark matter particles which scatter inelastically with nuclei (such that they reconcile the annual modulation reported by DAMA with the null results of CDMS and other experiments), however, can be captured by and annihilate in compact stars at a much higher rate. As a result, old white dwarf stars residing in high dark matter density environments can be prevented from cooling below several thousand degrees Kelvin. Observations of old, cool white dwarfs in dwarf spheroidal galaxies, or in the inner kiloparsec of the Milky Way, can thus potentially provide a valuable test of the inelastic dark matter hypothesis.Comment: 6 pages, 2 figur

    LP 400-22, A very low-mass and high-velocity white dwarf

    Get PDF
    We report the identification of LP 400-22 (WD 2234+222) as a very low-mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11080+/-140 K and a surface gravity of log g = 6.32+/-0.08. Therefore, this is a helium core white dwarf with a mass of 0.17 M_solar. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.Comment: accepted for publication in ApJ Letters, made minor correction

    Calibration of White Dwarf cooling sequences: theoretical uncertainty

    Full text link
    White Dwarf luminosities are powerful age indicators, whose calibration should be based on reliable models. We discuss the uncertainty of some chemical and physical parameters and their influence on the age estimated by means of white dwarf cooling sequences. Models at the beginning of the white dwarf sequence have been obtained on the base of progenitor evolutionary tracks computed starting from the zero age horizontal branch and for a typical halo chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear reaction rates, convection, mass loss and initial chemical composition are discussed. Then, various cooling sequences for a typical white dwarf mass (M=0.6 Mo) have been calculated under different assumptions on some input physics, namely: conductive opacity, contribution of the ion-electron interaction to the free energy and microscopic diffusion. Finally we present the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much effort has been spent to extend the equation of state down to the low temperature and high density regime. An analysis of the latest improvement in the physics of white dwarf interiors is presented. We conclude that at the faint end of the cooling sequence (log L/Lo=-5.5) the present overall uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr. We suggest that this uncertainty could be substantially reduced by improving our knowledge of the conductive opacity (especially in the partially degenerate regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap

    The Dynamic Formation of Prominence Condensations

    Full text link
    We present simulations of a model for the formation of a prominence condensation in a coronal loop. The key idea behind the model is that the spatial localization of loop heating near the chromosphere leads to a catastrophic cooling in the corona (Antiochos & Klimchuk 1991). Using a new adaptive grid code, we simulate the complete growth of a condensation, and find that after approx. 5,000 s it reaches a quasi-steady state. We show that the size and the growth time of the condensation are in good agreement with data, and discuss the implications of the model for coronal heating and SOHO/TRACE observations.Comment: Astrophysical Journal latex file, 20 pages, 7 b-w figures (gif files

    Formation and evolution of a 0.242 Msun helium white dwarf in presence of element diffusion

    Full text link
    A 0.242 Msun object that finally becomes a helium white dwarf is evolved from Roche lobe detachment down to very low luminosities. In doing so, we employ our stellar code to which we have added a set of routines that compute the effects due to gravitational settling, and chemical and thermal diffusion. Initial model is constructed by abstracting mass to a 1 Msun red giant branch model up to the moment at which the model begins to evolve bluewards. We find that element diffusion introduces noticeable changes in the internal structure of the star. In particular, models undergo three thermonuclear flashes instead of one flash as we found with the standard treatment. This fact has a large impact on the total mass fraction of hydrogen left in the star at entering the final cooling track. As a result, at late stages of evolution models with diffusion are characterized by a much smaller nuclear energy release, and they evolve significantly faster compared to those found with the standard treatment. We find that models in which diffusion is considered predict evolutionary ages for the white dwarf companion to the millisecond pulsar PSR B1855+09 in good agreement with the spin-down age of the pulsar.Comment: 6 pages, 3 figures, 12th European Workshop on White Dwarf
    corecore